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ABSTRACT 
The tomographic approximation, in which the Heaviside step function is replaced by a continuous smooth 
curve, is applied to the enthalpy method for heat transfer problems with isothermal phase change. Both 
the finite difference and finite element implementations, based on the basic enthalpy, the apparent heat 
capacity and the source term formulations, are considered. A 1-D Stefan problem of melting a solid is used 
as a test problem. The accuracy of the numerical solutions is measured globally using L2 error norms and 
comparison is made between the solutions using homographic approximation and those using linear 
approximation. The advantages of using homographic approximation are examined. 

KEYWORDS Homographic approximation Enthalpy method Stefan problem Phase change Finite difference 
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INTRODUCTION 

The modelling of liquid/solid phase change problems is important in many areas of science and 
engineering. Because experimental analysis is often prohibitively expensive and analytical 
solutions are generally unavailable for most of the practical problems, the motivation for 
numerical simulation is obvious and various mathematical/computational techniques have been 
developed in this field during recent years1-11. 

In the numerical modelling of heat transport with phase change, the so-called enthalpy method1 

has become a popular tool due to its important features, such as the ease of implementation in 
existing heat transfer programs, no computational overheads associated with tracking the moving 
interface, and validity for multi-dimensional problems with complicated interface shapes, etc. In 
the enthalpy formulation, the latent heat evolution condition on the moving interface is 
incorporated into the governing energy equation by introducing either a total enthalpy function, 
a modified specific heat coefficient, or a heat source term. Consequently the interface tracking 
and mesh deforming can be avoided and the numerical solution can be carried out on a fixed 
space grid. 

For isothermal phase change (i.e. at a single temperature), the enthalpy function, H(T), or 
equivalently the liquid volume fraction function7, g(T), introduced in the enthalpy formulation, 
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is discontinuous across the liquid/solid interface. The jump of H(T) at the melting temperature 
is equal to the latent heat. It is this discontinuity of H(T) that renders great difficulties in 
numerical solutions of phase change problems. A natural way to improve the discontinuity of 
the enthalpy function is to approximate the H-T curve by smoothed functions and solve the 
problem on the basis of weak formulation1,12-14. The smoothing schemes for H(T) currently 
used in the literature are usually C° continuous (with discontinuous derivative). Consequently 
the numerical solutions based on these C° smoothing schemes have the following undesired 
properties: 

(i) the definition of the approximated H(T) is usually piecewise, which involves multiple 
temperature intervals, 

(ii) the numerical formulations are usually different on these temperature intervals, which 
makes the numerical algorithm and implementation complicated, 

(iii) the accuracy of temperature gradient in the vicinity of the liquid/solid interface is usually 
unsatisfactory due to the C° approximation, 

(iv) it is well documented in the literature1,2,15-17 that the conventional discretizations of 
the enthalpy method have a tendency to oscillate numerically in temperature and phase 
front position. This is caused by over-looking the discontinuous behaviour of temperature 
gradient and enthalpy at the interface. 

An idea to overcome these defects is to introduce a differentiable approximation for H(T), 
i.e. the so-called homographic approximation. This approximation, in conjunction with the 
freezing index1, has been employed by Brauner et al.18 in a parabolic variational inequality 
formulation of the multiphase Stefan problems. Blanchard and Fremond used19 the homographic 
approximation to approximate the specific energy function in a variational equality formulation 
for the free boundary problems. 

In this paper we use the homographic approximation to approximate the enthalpy function 
in the enthalpy formulation based on the differential heat transport equation for phase change 
problems and examine the advantages. Both the finite different method (FDM) and the finite 
element method (FEM) implementations, including the associated discretization and solution 
schemes, are studied through three representative enthalpy formulations. A classical 1-D Stefan 
problem is used as a test problem and some promising and interesting numerical observations 
are reported. 

MATHEMATICAL MODEL 
For simplicity of presentation, consider the classical 1-D Stefan problem for phase changes in 
a pure substance in which the phase transition is governed by the equation of heat transport 
only. The mathematical model1,20 consists of the following parabolic differential equation: 

coupled with appropriate initial conditions, boundary conditions, and the following liquid/solid 
interface conditions: 
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Here subscripts i = s,l denote solid phase and liquid phase; Ω = Ωs u∪ Ω1 is the domain of interest; 
pi, ci,ki, Ti are density, specific heat, heat conductivity and temperature for phase i; t is time; 
S(t) is the position of interface; L is the latent heat; Tm is the melting temperature. 

ENTHALPY FORMULATIONS AND NUMERICAL SCHEMES 
In order to test homographic approximation, we consider the following three typical enthalpy 
formulations. 
Basic enthalpy formulation (BEF ) 

On neglecting convection effects, the basic enthalpy formulation for a conduction controlled 
phase change is given by: 

where H is the enthalpy function defined as1,21: 

Here Tref is an arbitrary reference temperature and g is the local liquid volume fraction7,21. For 
an isothermal phase change, g is given by the Heaviside step function: 

Standard FDM schemes. Applying the standard FDM discretization and the θ-method to (4) 
gives the following well-known schemes11 in point form: 

where ). = ∆t/(∆x)2, Tki) = T(i∆x, k∆t) and 0 ≤ θ ≤ 1. 
Standard FEM schemes. Based on Galerkin's formulation and the standard FEM discretization 

using linear element, the point form FEM schemes for (4) can be written as11,22: 

where the definitions of X and 6 are the same as that in (7). Equation (8) is usually referred to 
as consistent (or distributed) capacitance formulation. It has been shown in the literature23,24 

that the use of lumped capacitance in the FEM solution of phase change problems has some 
advantages over the consistent treatment. For 1-D problems, it is easy to prove that the FEM 
formulation with lumped capacitance is identical with the FDM formulation (7). 

Note that in this paper we treat (7) and (8) as T-version formulations in which temperature 
is the primary variable and the enthalpy is computed from the definition of (5) or some other 
smoothed functions that will be presented later. 

Apparent heat capacity (AHC) formulation 
From (5) an apparent heat capacity can be defined as: 
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By using the definition of AHC, (4) can be rewritten as: 

which is often called as apparent (or modified) heat capacity formulation4,25,26. 
For both the FDM and FEM cases, discretization of (10) leads to the following system in 

matrix form: 

where Tk is the temperature vector; K(T) is the conductance matrix; and the C(T*) is the 
capacitance matrix. For the AHC formulation, the numerical evaluation of C(T*) is of crucial 
importance. In this paper we shall treat C(T*) explicitly by letting T* = Tk and use the post-
iteration correction scheme proposed by Pham23 and Comini et al.27. This correction scheme 
consists of two steps for each iteration. First, (11) serves as a predictor. Then, the following 
corrector is used to calculate the corrected temperature: 

where E is the inverse of H and Hk + 1 is the corrected enthalpy value by: 

Source term formulation (STF)10,21 

An alternative to incorporating the latent heat into the enthalpy function is to treat the latent 
heat as a source term in the governing equation. Following Voller21, we split the total enthalpy 
into sensible and latent heat components, namely 

where 

Assuming p, c = constant, substitution of (14) into (4) yields the following source term 
formulation: 

in which —pLdg/dt is isolated as a non-linear source term. The standard FDM schemes and the 
equivalent lumped-capacitance FEM schemes are given by: 

Here we treat (17) as an h-version formulation. A fast iterative solution procedure based on 
STF was proposed by Voller21. 
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APPROXIMATIONS FOR ENTHALPY FUNCTION 
An important fact pertaining to the enthalpy formulation for isothermal phase change problems 
is that the derivative, ∂H/∂t in (4), is not well defined in the classical sense at T = Tm, due to 
the discontinuity of H( T). In practice, the generalized solutions to the original (4) are usually 
obtained as the limit of a uniformly convergent sequence of classical solutions to approximating 
problems, deduced by smoothing the H(T) curve and the coefficient in (4). It has been known 
that the smoothing scheme employed for approximating the enthalpy function, or equivalently 
the liquid fraction function, is of prime importance to the success of the enthalpy method. 

Linear approximation 
The simplest and most popular smoothing scheme for H(T) is perhaps the following linear 

approximation: 

obtained by replacing g in (5) with gε which is a linear approximation for the Heaviside step 
function defined as: 

where Ε is the semi-length of the mushy zone. On substituting (19) into (5) and assuming pi, ci 
are constants leads to an explicit expression for (18), viz. 

For AHC formulation, (20) corresponds to approximating the AHC (9) by the following step 
function used by Bonacina et al.28: 

It is easy to see that approximation (20) is C°-continuous only. 

Homographic approximation 
To improve the smoothness of the approximated H{T) curve, we introduce the so-called 

homographic approximation for the Heaviside step function, that is: 
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This approximation, based on the properties of the nomographic mapping is directly inspired 
from the singular limits of reaction diffusion equations modelling heterogeneous chemical catalyst 
and enzyme kinetics with absorption29-31. 

The great advantage of homographic approximation is its differentiability. As a matter of fact, 
gn(T) is C1-continuous in T. By differentiating (22) with respect to T, we have: 

which is continuous for all T. The definition of gn involves a parameter η, which is analogous 
to the ε in the linear approximation. The effect of η on the shapes of gn(T) and its derivative is 
illustrated schematically in Figure 1. By decreasing the value of η, the error of homographic 
approximation can be reduced monotonically. Theoretically speaking the homographic 
approximation curve can be used to approach the jump discontinuity infinitely by controlling 
the parameter η while still maintaining its C1 continuity. 

Now we can define a smoothed enthalpy curve in terms of the homographic approximation as: 

where gn is given by (22). In the limit we shall have: 

As an example, consider a special case where pi ci are constants and the same in both liquid 
and solid phases, i.e. ps = pt = p, cs = ct = c. In this case (24) can be expressed explicitly as: 

Based on (26) the corresponding AHC is given by: 
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For convenience and without losing generality, we shall assume Tm = 0 and hence T- Tm in 
(26), (27) can be replaced by T. 

Implementing the nomographic approximation in FDM 
In the linear approximation (20), Hε(T) is defined piecewise in three intervals and the 

expressions for FDM or FEM schemes on these intervals are different. In the homographic 
approximation, however, the definitions (26) and (27) are valid on the whole domain. This makes 
the implementation work much easier. To illustrate how the homographic approximation is 
implemented in the standard FDM and FEM schemes, we take the T-version BEF (3) as an 
example and consider the standard 1-D FDM schemes given by (7). The non-linear Gauss-Seidel 
SOR algorithm11 can be written as follows: 

where 1 ≤ w < 2 is the over relaxation factor and 

To proceed with the iteration algorithm (28), we need to compute an inverse function R-1. For 
homographic approximation, by substituting (22) into (7), collecting the Tk+1i terms and assuming 
Tm = 0, cs = c1 = c, we obtain the function R(T) in the following form: 

Let bi = pc + 20ΛK; then (31a) can be rewritten as: 

In order to solve this quadratic equation, we need to know the sign information of T on the 
basis of dki and other known parameters. This is actually fairly easy if we rewrite (31a) in the 
following form: 

and noting the fact that: 

Equations (31) and (33) suggest the following relation: 

By using (34) we rewrite (32) into two separate quadratic equations, namely 
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where the first equation is for T ≥ 0 and the second corresponds to T < 0. So far the inversion 
of R(T) has been reduced to the solution of a quadratic equation given in (35) and this can be 
done analytically. 

It is worth noting that in the linear approximation computation of R-1 and Hε(T) has to 
be programmed separately on each of the three temperature intervals. For homographic 
approximation, however, the formulation presented in this subsection is valid over the whole 
temperature range. 

THE TEST PROBLEM AND NUMERICAL COMPUTATION 

Stefan problem32 

Consider the classical 1-D Stefan problem of melting a solid in the half space region x > 0. 
Initially the material is in the solid phase at a constant temperature T(x, 0) = T2 < Tm. At time 
t = 0 the temperature of the surface x = 0 is instantaneously raised and maintained at 
T(0, t) = Tt> Tm. This will cause a layer of solid to be melted and this melted layer will expand 
into the solid as time advances. Assuming the heat transfer is diffusion-controlled, this phase 
change problem is described by the governing equations (l)-(3) with the appropriate initial and 
boundary conditions. The similarity solution of this 1-D Stefan problem is well known and can 
be found in References 1 and 20. This problem is adopted throughout this work as a test problem 
together with the following data: 

Numerical computation 
In this paper the test problem is solved by using the 1-D FDM and FEM schemes. Only a 

finite part of the semi-infinite domain, i.e. [0,1], is considered. The boundary conditions imposed 
are of Dirichlet type with a constant temperature T1 = 1 at x = 0 and a time dependent function 
φ(t) at x = 1 provided by the similarity solution of the Stefan problem. The transient solutions 
are computed from an initial time t0 = 0.2 to t = 0.5. To observe the convergence of numerical 
solutions, the FDM grids and the FEM meshes are refined by dividing the spatial element size 
by half each time. The crudest mesh used in this work, i.e. the mesh 1, has an element size 
∆x1 =0.1. The subsequent meshes are obtained by defining ∆x2 = ∆x1/2 and ∆x3 = ∆x1/4. 

For the BEF and AHC formulation, numerical solutions are obtained by using both the linear 
and the homographic approximation. The non-linear systems resulted from the FDM and FEM 
schemes are solved by the non-linear Gauss-Seidel SOR iteration, and the iteration termination 
is controlled by the relative error norm of the nodal temperature. 

For the source term formulation, we compute solutions using the unsmoothed g( T) and its 
homographic approximation gn(T). When g(T) is employed, we use the algorithm (15) and 
follow the solution procedure proposed by Voller21, in which the linearized system is solved by 
the tridiagonal system solver and the iteration convergence is controlled by the error norm of 
residue. When gn(T) is used, we find that for some cases the iterations based on (15) fail to 
converge due to the extra non-linearity introduced in the homographic approximation. 
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Consequently, (15) is modified as follows: 

where 

System (36) is solved by the non-linear Gauss-Seidel iteration and the formulation is similar 
to those derived earlier. 

In order to examine the advantage of the homographic approximation, calculations using the 
homographic approximation are compared with those using the linear approximation or the 
unsmoothed enthalpy function. The comparisons of accuracy and convergence are made in terms 
of the following global error measurement. 

Global error measurement 
In our computation the accuracy of the numerical solutions is measured globally against the 

similarity solution of the test problem. It is known that any measure of the accuracy involves 
a choice of particular error norms. To measure the global error we define the following L2 norms: 

for solutions of temperature, heat flux and interface position, respectively. Here Tki is the numerical 
solution of temperature at grid point xi and time tk; Qki+1/2 is the numerical solution of heat 
flux at the middle point of element, x i+1/2 = (xi + x i+1)/2 and at time tk. Note that |εx|, |ε2| 
are actually the discrete L2 norms based on nodal values. 

NUMERICAL OBSERVATIONS 
For explicit time integration schemes, the time steps usually need to be very small due to the 
stability condition. Consequently, the smoothness of the H(T) curve is not so important and 
the homographic approximation may not give much advantage. However, for implicit schemes, 
especially with large time steps, the advantage of homographic approximation becomes much 
more distinct. Therefore in the following discussion we shall focus on the implicit schemes only. 

Basic enthalpy formulation 
It can be seen from (19) and (20) that the linear approximation requires a selected value for 

parameter E whose physical meaning is the semi-length of the mushy zone. It has been reported 
in the literature2,33-35 that the choice of the value of £ is of considerable importance for the 
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enthalpy method. To study the effect of parameters ε and η, a typical plot of BEF solutions is 
given in Figure 2, in which the error norm | e1 | of the FDM (or equivalently the lumped-capacitance 
FEM) solutions of the test problem using the backward scheme (7) are shown for a set of ε and 
η values ranging from 2.5 × 10 - 5 to 0.4. For linear approximation, the error measurement 
presented in Figure 2 indicates that there exists an optimum ε (where the best accuracy may be 
obtained) for each particular spatial and time discretization. This optimum ε varies with different 
meshes. The choice off is so significant that by choosing the optimum ε (or its approximation) 
the accuracy of the numerical solutions can be greatly improved. However, the most dramatic 
improvement of accuracy happens only within a narrow range of ε-value in the vicinity of the 
optimum £, as shown in Figure 2. Since the analytical prediction for the optimum ε is generally 
unavailable, this narrow range needs to be determined through numerical experiment. 

In homographic approximation, the parameter η plays a role similar to that of £ in the linear 
approximation. The results in Figure 2 also suggest the existence of an optimum η in homographic 
approximation for each particular mesh. For a wide range of η-value (e.g. η≤ 0.4 for mesh 1 
and η ≤ 0.1 for mesh 2 as shown in Figure 2) the homographic approximation is able to produce 
better accuracy than the linear approximation in terms of the global error norms. It is interesting 
to note that when ε,η→ 0 the accuracy of the two approximations becomes the same. This is 
consistent with the theory, because when ε,η→ 0 both the linear approximation gε(T) and the 
homographic approximation gn(T) approach to the same limit, i.e. the unsmoothed step function 
(6). 

Next we consider the consistent-capacitance FEM formulation given by (8). The main difference 
between (8) and (7) lies that in (8) the averaged value: 

which involves two neighbouring elements and 3 nodes is used to approximate H(Ti) in contrast 
to the direct use of the lumped nodal value H(Ti) in (7). Therefore it is expected that the 
consistent-capacitance FEM formulation should be more sensitive to the smoothness of the 
enthalpy function than the lumped-capacitance FEM or FDM would. As an example, the 
consistent FEM solutions of the test problem are computed using linear and homographic 
approximations and the Crank-Nicholson scheme. In Figure 3, we plot the error norms of these 
solutions. A big difference between the results shown in Figure 2 and Figure 3 is that when ε 
and η→ 0 the error norms of the consistent-capacitance FEM solutions using linear and 
homographic approximation do not approach to the same limits. As one can see from Figure 
3a that the accuracy of temperature at small η and near the optimum η by the homographic 
approximation is much better than that at small ε and near the optimum ε by the linear 
approximation; and this accuracy improvement becomes more significant with mesh refinement. 
In Figure 3b the improvement of accuracy of flux by using homographic approximation is similar 
to the case for temperature, except for the first mesh. From Figure 3c we can see that for the 
whole range of ε and η and all the three meshes we tested, the homographic approximation 
predicts the interface position more accurately then does the linear approximation. 

Our test results also indicate that the homographic approximation can help to improve the 
convergence behaviour of the consistent FEM solutions. For instance, at ε = 10-4 the FEM 
flux solutions using linear approximation have a non-monotonic convergence tendency as shown 
in Figure 3b, where the |e2| of mesh 2 is worse than that of mesh 1. While the |e2| given by the 
homographic approximation shows monotonic convergence with a faster convergence rate at 
η = 10 -4. Another convergence improvement by using homographic approximation is observed 
for the low Stefan number cases. For example, when L = 10 (i.e. St = 0.1) we cannot obtain 
convergent FEM solutions from linear approximation via the Gauss-Seidel SOR iteration 
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scheme, whereas the homographic approximation poses no problem at all for the non-linear 
iteration convergence. 

Apparent heat capacity formulation 
To test the homographic approximation for AHC formulation, we consider the lumped-

capacitance FEM backward scheme (or equivalently the backward FDM scheme) by setting 
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0 = 1 in (11). The AHC is approximated by the step function (21) and the corresponding 
nomographic approximation (27). Both the solutions with and without the post-iteration 
correction are computed and some typical results are presented in Figure 4. The error norms 
shown in Figure 4 indicate that homographic approximation can always help to improve the 
accuracy of temperature solution whether the post-iteration correction is used. Furthermore, for 
the conventional AHC method, i.e. when no post-iteration correction is applied, the accuracy 
improvement by the homographic approximation is more significant. It is interesting to note 
that for the two-level scheme we tested and based on the |ex| norm, the post-iteration correction 
only works for small values of ε and η (ε ≤ 0.05 in linear approximation and η ≤ 0.01 in 
homographic approximation as one can see from Figure 4). When ε and η are large, the post-
iteration correction gives no accuracy improvement. 

Source term formulation 
To study the performance of homographic approximation in STF, we compute two sets of 

lumped-capacitance FEM solutions by the implicit backward scheme, the first set is obtained 
using the unsmoothed liquid fraction (6) and the formulation given in (17). The second set is 
based on the homographic approximation (22) and the formulation (36)-(38). In Figures 5 and 
6 we compare the two sets of solutions in terms of global error norms. The results presented in 
Figure 5 again suggest the existence of the optimum values of η in homographic approximation. 
Note that the optimum values of η based on |e1| and |e2| may be different. When η→0 the 
accuracy of the two sets of solutions becomes the same. For a wide range of η (e.g. 
10 -4 < η < 10 - 1 for our test problem) the homographic approximation gives more accurate 
solutions and the accuracy improvement is much more significant near the optimal η. The 
convergence of the two sets of solutions with mesh refinement is shown in Figure 6. 
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For the STF, the homographic approximation can also help to improve the accuracy of 
temperature gradient near the solid/liquid interface. As a typical example, Figure 7 shows that 
by using the unsmoothed liquid fraction the solution of heat flux is usually unsatisfactory in the 
neighbourhood containing the interface, whereas more accurate solution can be obtained by 
using the homographic approximation. 

CONCLUSIONS 
For the three typical numerical schemes of the enthalpy method tested in this paper, our numerical 
results show promising prospect for the application of the homographic approximation in phase 
change problems. Based on our numerical observations, the main features of the homographic 
approximation may be summarized as follows. 

First and perhaps the most important, the approximated enthalpy function becomes 
C1-continuous. Consequently, the definitions of enthalpy Hn, apparent heat capacity CAη and 
liquid fraction gn are valid on the whole temperature range ( -∞< T < + ∞), in contrast to 
the case of linear approximation in which the definitions of the corresponding quantities, Hε, 
CAε and gε, have to be given piecewise on each of the three temperature intervals. Because of its 
simple definition, the homographic approximation is simple in formulation and easy to program. 

Second, from the time integration point of view, the advantage of using homographic 
approximation is more distinct for implicit time integration schemes, especially when large time 
steps are used. 

Third, from the numerical formulation point of view, due to the distributed nature of the 
capacitance matrix, the consistent-capacitance FEM formulation is more sensitive to the 
smoothness of the enthalpy function than the lumped-capacitance treatment. Therefore, the 
consistent FEM solutions can benefit the most from the homographic approximation. For a 
wide range of η-value (e.g. η ≤ η0 , η0> optimum η) the homographic approximation results in 
more accurate solutions than the linear approximation in terms of the global error measurement. 
Furthermore, the accuracy and convergence improvement for the consistent FEM solutions by 
using the homographic approximation are much more significant than that in the FDM and 
the lumped-capacitance FEM. At low Stefan number the homographic approximation can also 
help to improve the convergence of non-linear iteration when the solutions using the linear 
approximation fail to converge. 

Fourth, in the lumped-capacitance FEM and the FDM formulations, the homographic 
approximation can also help to improve the solution accuracy within a certain range of η-value. 
This improvement becomes more dramatic near the optimum η. Unfortunately, the optimum η 
is usually unknown beforehand and has to be determined through numerical experiment. 

Last, pertaining to the application of the homographic approximation, an important difference 
between the lumped-capacitance FEM (or equivalently the FDM) and the consistent-capacitance 
FEM solutions is the behaviour of error norms at small values of ε and η. For the 
lumped-capacitance FEM solutions, the error norms obtained using unsmoothed, linear and 
homographic approximations approach to the same limits when ε, η → 0. In contrast, for the 
consistent-capacitance FEM solutions, the error norms obtained by different smoothing schemes 
are generally different at small values of ε and η and the homographic approximation always 
gives better results. Therefore the homographic approximation is highly recommended for the 
consistent-capacitance FEM formulation. 

Since there is no spatial variable involved in the H- T relation, the application of homographic 
approximation to multidimensional phase change problems should be straightforward and similar 
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advantages as in 1-D case are expected. However, further work still needs to be done to evaluate 
the full benefits of using nomographic approximation for the multidimensional problems. 

In this work the homographic approximation has only been used for approximating the 
enthalpy function. It is worthy of mention that the homographic approximation can also be 
employed to approximate other functions with jump discontinuity, such as discontinuous material 
properties. For example, a piecewise constant heat conductivity can be approximated by: 
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